


Publication date




A. Annotation Reference ......

N algTo = (g N Y o PSP PR

1.1. @Description

1.2, @DOCUMENTALION ....enitine ittt et et e e e e e e e e e e e e e e e e e e aneeneens
TG T (2 A 11 0o

1.4. @Status .......
1.5. @Versioninfo
1.6. @Sourcelnfo

N (21 =41 o PP

1.8. @License .....

L9, @LADE ..o
O () 1 PP UPPPT
LLALL @OUL ..t

1.12. @Range .....
1.13. @Role .......

0N S (O L 1
O ST ()] = 1010 Vo [

1.16. @Execute ...

O A o g T U =P

1.18. @Finalize ...
1.19. @DLL .......

2. Meta Data REPIESENTALION ... .ceeteieiiiti et et et e e e et e e e e et eeeebeaaeeeees
2.1. Embedded ANNOLALiONS ... ...cvuiiiieie e
2.2. AttaChed ANNOLALIONS .....ceeieiieie e e e ens
PG T 2 1 7o 1= o 1,




Appendix A.

Annotation Reference

1. Annotation Types

Annotations are used to specify resources within a class that relate to its use as a modeling component for OM S3.
Such annotations may have different relevance and importance to different aspects of the use of component use.
The same annotations can also play different roles depending on their context. There are three main annotation

categories:

Mandatory Execution Annotations

Supporting Execution Annotations

Documentation Annotations

Such meta data is essential information for component execution (in ad-
dition to the documentation purpose). Thee describe method invocation
points and data flow between components. Thisis required meta data.

Such meta data supports the execution by providing additional information
about the kind of data flow, physical units, and range constraints that might
be used during execution. Thisis optional meta data.

Those annotations are being used for documentations, presentation layers,
databases, and other content management system. This is required meta
data for component publication, but optional for execution.

What are Annotations? Annotations are a Java feature since version 1.5. They are an add-on to the Java language
to alow for custom and domain specific markups of language elements. They do not affect directly the class
semantics, but they do affect the way classes are treated by tools, such as a modeling framework. Annotations
can be seen as extension of the Java Classes with meta information that can be obtained up from sources files,
compiled classes, or loaded classes at runtime. They respect also languages scopes and are supported by JavalDEs
with code completion and syntax highlighting.

The table below shows all modeling annotations categorized by language elements they are describing.

Table A.1. Component Annotations Overview

Class Field Method
@escription @escription @xecute Y
@ut hor @nV @nitialize
@i bl i ogr aphy @ut Y @inal i ze
@t at us @i t
@/er si onlnfo @range
@Xeywor ds @Rol e
@.abel @ound
@our cel nfo @ abel
@.i cense

@ocunent ati on

@LL 2

Note

= Required annotation for a component.

2 Interface annotation for Native Language integration

Annotation names always start with the '@ character, indicating the difference to aregular class. The @(at) sign
was chosen because 'AT' can be seen as abbreviation for ‘Annotation Type'. Annotations can only appear once for




Annotation Reference

agiven language element. For exampleitisillegal to usethe @ut hor annotation twice for acomponent. Instead,
the name field of an @ut hor should list the two names, separated by some delimiter.

The following sectionsintroduce all modeling annotations in detail, examples are given.

1.1. @Description

The @escri pti on annotation provides for component summary information, such as a brief paragraph about
its purpose, scientific background, etc. It is being used for automatic capturing the purpose of a component by
archiving tools, online presentation or documentation tools, or to supplement database integration. The component
selection during the process of model building and repository management can be supported by this annotation
which should not exceed afew sentences. If more context information need to be provided, the @ocurrent at i on
annotation should be used in addition.

Synopsis @escription(<String>)
ar g - the description paragraph

The description can be localized for different languages. Add the 1SO language code (http:/
ftp.ics.uci.edu/publietf/http/rel ated/iso639.txt) to provide description in a different language. De-
scription for multiple languages is supported.

Type Documentation Annotation
Scope Class, Field
Example @escription

("CGrcle Area Cal culation.")
public class CircleArea {

@éscri ption("Radi us")
@n public double r;

@escription
(en="Circle Area Cal cul ation.",
de="Ber echnung der Kreisflaeche")
public class CrcleArea {

@escri ption("Radi us")
@n public double r;

1.2. @Documentation

The @ocunent at i on annotation serves as a connector or link to more detailed background documentation about
the component. It allows to reference other documents via a URL. Usually those documents reside on a public
server or local hard drive as PDF, HTML, Docbook, or an other text document. The referenceis provided asusing
different URL protocolssuch ashttp://..., https:/l....fil eill...

Synopsis @ocunent at i on( <URL>)
ar g - URL reference to more detailed documentation.
Type Documentation Annotation

Scope Class




Annotation Reference

Example @ocunent ati on
("http://myserver.com docs/ Cricl eArea. pdf")

public class CircleArea {

}

1.3. @Author

The optional @ut hor annotation providesinformation about the authorship of the component. The annotation has
sub the fields nane, or g, and cont act provide more details about the name, the affiliated organization, and some
contact information such as an email address, or alink to a home page.

Synopsis @\ut hor (nanme=<String>, org=<String>, contact=<String>)
nane - the name of the authors(s)
or g - organization name (optional)
cont act - contract information such as email or address (optional)
Type Documentation Annotation
Scope Class

Example @\ut hor
(nanme="Joe Scientist",
org="Research Org",
contact ="j oe. sci enti st @esear ch-org. edu")

public class HanobnET {

}

1.4. @Status

This annotation enriches a component with some development and deployment status information. A statusis a
component quality indicator. A developer can specify the level of completeness or maturity of a component with
this tag.

Synopsis @t at us( <Enun®)
arg- Status. DRAFT (Initial devel opment status, private prototype)
St at us. SHARED, (conponent worth sharing, still in devel opnent)

St at us. TESTED, (conponent is tested in a nodel, test datasets and unit tests
avai | abl e)

St atus. VERI FI ED, (conponent is inplenented properly, conplete)
St at us. VALI DATED, (Conponent fulfills requirenents, validation tests avail able
St at us. CERTI FI ED (Conponent accepted and certified by authorty)

Type Documentation Annotation

Scope Class

Example @escription

("Grcle Area Calculation.")

@t at us
(St at us. TESTED)
public class CircleArea {




Annotation Reference

}

This annotation might be consumed by tools that publish the component to a component repository, it should
control the publication process. Another use case would be the pre-run check of a deployed model that al of its
components are certified by a authority.

1.5. @VersionInfo

The @ver si onl nf o annotation takes aargument that represents the version of this component. A developer might
use version control system supported keyword substitution for this. The example below shows the use of the Sub-
version keywords $1 d to provide revision number, modification time, and devel oper name as version information
record. Mgjor version control systems (CV'S, Subversion,...) either have a built-in support for thisfeature or it can
be used in conjunction with external tools (Mercurial, GIT). Therefore this annotation should not only contain an
arbitrary version number, but afull version record instead is good common practice.

Synopsis @/er si onl nf o(<St ring>)

arg - Version information record

Type Documentation Annotation
Scope Class
Example @/ersi onl nfo

("$ld: ET.java 20 2008-07-25 22:31:07Z od $")
public class ET {

:

Component repositories can use and present thisinformation, archiving tools or documentation generators might
pick this up too.

1.6. @Sourcelnfo

The @sour cel nf o annotation captures information about the source. This should be some hint about source avail-
ability, maybe the source location or some contact information. The example below showsthe use of Subversion's
keyword substitution for the head URL of asourcefile. It can aso point to a specific tagged version with arepos-
itory.

Synopsis @our cel nf o(<String>)

arg - source URL reference

Type Documentation Annotation
Scope Class
Exanuje @sour cel nfo

("$HeadURL: http://www. test.org/repo/ ET.java $")
public class ET {

}

@our cel nf o is optional. Component repositories or documentation generators can use and present thisinforma-
tion

1.7. @Keywords

A component an be tagged with the @eywor ds annotation to characterize/categorize it. It does have the same
purpose like a keyword list in a scientific paper. Thisis optional meta data and can be used to index, search, and
retrieve archived and stored components. It is optional meta data.




Annotation Reference

Synopsis @eywor ds(<String>)

arg - list of kerwords separated by conm
Type Documentation Annotation
Scope Class
Example @escription
("Circle Area Calcul ation.")
@Xeywor ds

("Geonetry, 2D")
public class CircleArea {

}

1.8. @License

The @i cense annotation to specify thelicensefor acomponent. It isoptional metadata. If not present itisassumed
the component is in the public domain and there are no restrictions for its reuse. The license can bein lined text,
however it is recommended to use a URL to point to the license text.

Synopsis @i cense(<String>)

arg - the license text or a URL to its |ocation

Type Documentation Annotation
Scope Class
Example @escription("Circle Area Cal cul ation.")

@i cense("http://ww.gnu.org/licenses/gpl-2.0.htm ")
public class CircleArea {

}

1.9. @Label

Labels relate to ontologies (label is an OWL annotation). Labeling a field or component maybe provides for
alternative names. They can be used to relate components or fields to another naming convention, terminology,
or ontologies.

Synopsis @abel (<String>)

arg - an alternative nane

Type Documentation Annotation
Scope Class, Field
Example public class Calc {

@abel ("l atitude")
@n public double Iat;

}
Labels are optional.

1.10. @In

The @ n annotation on afield specifiesit as input to the component. The field must be public. It indicates a read
(or input access) from within the Execut e method to the field. There are no arguments for this annotation.




Annotation Reference

Synopsis
Type
Scope

Example

@n
execution, documentation annotation

Field

@n public double Iatitude;

This annotation is a required annotation for execution to enable data flow between components. @ut fields of
one component might be connected to an @ n field of a second component.

1.11. @Out

The @Out annotation on afield specifiesit as output of the component. Thefield must be public and the Execut e
method will write to it. It is used to connect to an @ n field of another component. There are no arguments for
this annotation.

Synopsis
Type
Scope

Example

@out
execution, documentation annotation

Field

@ut public doubl e dayl en;

This annotation is a required annotation for execution to enable data flow between components. @ut fields of
one component might be connected to an @ n field of a second component.

1.12. @Range

The @ange annotation is supporting an @ n or an @ut field. If present, it defines amin/max range in which the
value of the field is considered valid. It is up to the execution runtime to handle the range information. Violating
aranges might lead to execution abortion if it is a serious problem or just awarning message. Another use of the
range information would be in component testing, see Section ?7?2?.

Synopsis @Range(m n=<doubl e>, max=<doubl e>)
m n - the minimum value, (default=Doubl e. M N)
max - the maximum value, (default=Doubl e. MAX)
Type Execution Annotation
Scope Field
Example e
@range (m n=-90, nmax=90)
@n public double Iatitude;
In the exampl e above the latitude value can only be in the range of -90 to +90 degree. A value out of
this range would probably break any equation that is using latitude. The range use aboveis similar
to a pre-execution check.
1.13. @Role

The @ol e annotation givesan @ n or @ut tagged field a certain meaning within the modeling domain. It allows
someone to understand the meaning of a data field within the modeling context. A @Role annotation categorizes




Annotation Reference

afield. Such categories might be "Parameter”, "Variable", "Output", "Input”, "Simulated" and others. The Role
annotation takes the category as a String parameter. There are predefined categories defined in @Role, however
categories can be defined by the component developer.

If the @Role annotation is not provided, the default Rol e. VARI ABLE it is assumed.

Synopsis @Rol e(<String>)
arg - the role that this field is playing in context of the conponent.
predefi ned:

Rol e. PARAMETER, Rol e. VARI ABLE, Rol e. SI MULATED, Rol e. OBSERVED, Rol e. STATE,

Rol e. QUTPUT
Type Documentation Annotation, Testing
Scope Field
Example @0l e(Rol e. PARAVETER)

@n public double |atitude;

This example tags 'latitude’ as Parameter.

@Rol e(Rol e. QUTPUT_FI LE + Rol e. PARAMETER)
@n public File input;

Roles can be combined too. Now the 'input’ field is a parameter and an output file.

1.14. @Unit

A @it annotation binds a physical unit to a component field that is tagged as @ n or @ut . Units are usualy
attached to scalars and arrays fields. Thisinformation allows the frameworks to perform unit checking/validation
and unit conversion. There are several open source unit conversion librariesavailablethat could be used to perform
unit conversion. An example unit conversion implementation is given in Section 2?2,

Synopsis @it (<String>)

arg - the physical unit of the field

Type Documentation Annotation, execution support
Scope Field
Example public class Calc {

@i t ("degree")
@n public double |atitude;

1.15. @Bound

A @ound definesabinding to another field. It allowsto express dependencies between fields. An array field could
be bound to another field that holds the size for that particular array.

Synopsis @ound(<String>)
arg - the nanme of the field that this field is bould to.

Type Documentation Annotation, execution support.




Annotation Reference

Scope Field
Example public class ET {

@ound( " nsi nt") /1 "jh_coeff' is bound to 'nsim
@n public double[] jh_coeff;

@n public int nsim
:
1.16. @Execute

The method that is tagged with the @xecut e annotation provides the implementation logic of the component. In
this method the component Input is being transformed to output. The execution method can have any name, it has
to be non-static, publ i ¢, voi d return type, no arguments.

Thisisrequired meta data for a component.

Synopsis @xecut e

Type Execution Annotation

Scope Method

Example public class Conmponent {
@xecut e

public void executenet hod() {
/| execute code here

}
}

1.17. @Initialize

Within the @ ni ti al i ze method the internal state of a component is initialized. For example opening a file for
reading, or a creating a data base connection would be something that should be done within @ ni ti al i ze

Synopsis @nitialize

Type Execution Annotation
Scope Method
Example public class Conponent {

@nitialize
public void start() {

[/l initialization code
}

}

Name the initialize method any hame you want, but annotate it with @ ni ti al i ze The initialize methods has to
be non-static, publ i ¢, voi d, and has no arguments. This method gets called once after component instantiation
and before the first execution. Thisis optional meta data.

1.18. @Finalize

This method provides the notion of afinal cleanup after model execution (e.g. Closing a DB connection). Usually
the @i nal i ze method and the @ ni ti al i ze method are both present.

Synopsis @inalize




Annotation Reference

Type Execution Annotation
Scope Method

Example public class Conponent {
@inalize
public void cleanup() {
/| execute code here
}
}

The @i nal i ze method gets called after the final @xecut e and the termination of the model.
1.19. @DLL

The @LL Annotation simplifies theintegration of native Librarieswritten in C++, C, and FORTRAN. It takes an
argument that corresponds to the name of the DLL (Windows), Shared Object (Linux/Unix), or Library (OSX).

If for example the argument is
Synopsis @LL(<String>)

ar g - the core name of the DLL (without lib prefix in Linux, no file extension).

Type Interface Annotation

Scope Interface<T extends Library>

Example i nport ons3. annot ati on. *;
@LL("F90Dyn")

interface F95Test extends com sun.jna. Library {
/1 java interface nethod to FORTRAN
int foorult(int a, int b);

}

// Bind 'F90Dyn.dl|' to the interface ' F95Test"'
F95Test |ib = Libraries. bi ndLi brary(F95Test. cl ass);

Note: This annotation is supported by the

2. Meta Data Representation

There are various strategies for attaching meta data annotations to components.

2.1. Embedded Annotations

Embedded Annotations are the preferred method for annotating modeling components. They are placed directly
into the source code. Thereforeit is easy to keep code and meta datain sync during development.

i mport ons3. annot ati ons. *;
public class Dayl en {
static final int[] DAYS = {
15, 45, 74, 105, 135, 166, 196, 227, 258, 288, 319, 349
b

@Range(m n=6, max=18)
@ut public doubl e dayl en;

@n public Cal endar currentTine;

@Rol e(“Paraneter”)




Annotation Reference

@Range(m n=-90, max=90)
@n public double latitude;

@xecut e
public void execute() {
int month = currentTi ne. get (Cal endar. MONTH) ;
doubl e dayl = DAYS[nonth] - 80.;
if (dayl < 0.0)
dayl = 285. + DAYS[nonth];

doubl e decr = 23.45 * Math. si n(dayl /365.*6.2832) *0. 017453;
doubl e alat = | atitude*0.017453;
doubl e csh = (-0.02908 - Math.sin(decr) * Math.sin(al at))
/[ (Mat h. cos(decr) * Math.cos(alat));
daylen = 24.0 * (1.570796 - Math. atan(csh /
Mat h.sqrt (1. - csh * csh))) / Math.Pl;

2.2. Attached Annotations

Thefollowing Listing show aalternative implementation of the Dayl en component. It was split into two parts, (i) a
pure computational component classDayl en. j ava and (ii) the component metadata class Dayl enConpl nf o. j ava
. Only the latter has meta data dependencies to Ovs3.

DaylenComplnfo.java
publ i c abstract class Dayl enConpl nfo {

@Range(m n=6, max=18)
@ut public doubl e dayl en;

@n public Cal endar currentTing;

@Rol e(“Par aneter”)
@Range(m n=-90, max=90)
@n public double |atitude;

@xecut e
public abstract void execute();

}

Asarule, an attached component meta data class has the same name like the component but ends with Conpl nf o.
This class has to be public and abstract. It duplicates all the relevant fields and methods that should be annotated
for OMS3. The methods should all be abstract. It isimportant to use the same spelling for fields and methods.

Daylen.java
public class Daylen {

static final int[] DAYS = {
15, 45, 74, 105, 135, 166, 196, 227, 258, 288, 319, 349
IE

publ i c doubl e dayl en;
publ i ¢ Cal endar currentTine;
public double Iatitude;

public void execute() {
int month = currentTi ne. get (Cal endar. MONTH) ;
doubl e dayl = DAYS[nonth] - 80.;
if (dayl < 0.0)
dayl = 285. + DAYS[nonth];

10



Annotation Reference

doubl e decr 23.45 * Math. si n(dayl /365. *6. 2832) *0. 017453;
doubl e al at | atitude*0.017453;
doubl e csh = (-0.02908 - Math.sin(decr) * Math.sin(alat))
/ (Mat h. cos(decr) * Math.cos(alat));
daylen = 24.0 * (1.570796 - Math.atan(csh /
Mat h.sqrt (1. - csh * csh))) / Math.Pl;

There are pro and cons for using embedded and attached component meta data. External meta data enables clean
and neutral computational components parts with no framework dependency. However, two separate files have to
be managed and have to kept in sync while doing component devel opment.

2.3. Attached XML
[tbd]

11



