

Publication date

iii

A. Annotation Reference .. 1
1. Annotation Types .. 1

1.1. @Description ... 2
1.2. @Documentation .. 2
1.3. @Author ... 3
1.4. @Status .. 3
1.5. @VersionInfo ... 4
1.6. @SourceInfo .. 4
1.7. @Keywords ... 4
1.8. @License .. 5
1.9. @Label ... 5
1.10. @In .. 5
1.11. @Out .. 6
1.12. @Range .. 6
1.13. @Role ... 6
1.14. @Unit ... 7
1.15. @Bound .. 7
1.16. @Execute .. 8
1.17. @Initialize ... 8
1.18. @Finalize .. 8
1.19. @DLL .. 9

2. Meta Data Representation ... 9
2.1. Embedded Annotations .. 9
2.2. Attached Annotations ... 10
2.3. Attached XML ... 11

1

Appendix A. Annotation Reference
1. Annotation Types
Annotations are used to specify resources within a class that relate to its use as a modeling component for OMS3.
Such annotations may have different relevance and importance to different aspects of the use of component use.
The same annotations can also play different roles depending on their context. There are three main annotation
categories:

Mandatory Execution Annotations Such meta data is essential information for component execution (in ad-
dition to the documentation purpose). Thee describe method invocation
points and data flow between components. This is required meta data.

Supporting Execution Annotations Such meta data supports the execution by providing additional information
about the kind of data flow, physical units, and range constraints that might
be used during execution. This is optional meta data.

Documentation Annotations Those annotations are being used for documentations, presentation layers,
databases, and other content management system. This is required meta
data for component publication, but optional for execution.

What are Annotations? Annotations are a Java feature since version 1.5. They are an add-on to the Java language
to allow for custom and domain specific markups of language elements. They do not affect directly the class
semantics, but they do affect the way classes are treated by tools, such as a modeling framework. Annotations
can be seen as extension of the Java Classes with meta information that can be obtained up from sources files,
compiled classes, or loaded classes at runtime. They respect also languages scopes and are supported by Java IDEs
with code completion and syntax highlighting.

The table below shows all modeling annotations categorized by language elements they are describing.

Table A.1. Component Annotations Overview

 Class Field Method

@Description @Description @Execute 1)

@Author @In 1) @Initialize

@Bibliography @Out 1) @Finalize

@Status @Unit

@VersionInfo @Range

@Keywords @Role

@Label @Bound

@SourceInfo @Label

@License

@Documentation

@DLL 2)

Note
1) Required annotation for a component.

2) Interface annotation for Native Language integration

Annotation names always start with the '@' character, indicating the difference to a regular class. The @ (at) sign
was chosen because 'AT' can be seen as abbreviation for 'Annotation Type'. Annotations can only appear once for

Annotation Reference

2

a given language element. For example it is illegal to use the @Author annotation twice for a component. Instead,
the name field of an @Author should list the two names, separated by some delimiter.

The following sections introduce all modeling annotations in detail, examples are given.

1.1. @Description

The @Description annotation provides for component summary information, such as a brief paragraph about
its purpose, scientific background, etc. It is being used for automatic capturing the purpose of a component by
archiving tools, online presentation or documentation tools, or to supplement database integration. The component
selection during the process of model building and repository management can be supported by this annotation
which should not exceed a few sentences. If more context information need to be provided, the @Documentation
annotation should be used in addition.

Synopsis @Description(<String>)

arg - the description paragraph

The description can be localized for different languages. Add the ISO language code (http://
ftp.ics.uci.edu/pub/ietf/http/related/iso639.txt) to provide description in a different language. De-
scription for multiple languages is supported.

Type Documentation Annotation

Scope Class, Field

Example @Description
 ("Circle Area Calculation.")

 public class CircleArea {
 ...
 @Description("Radius")
 @In public double r;
 ...
 }
..

 @Description
 (en="Circle Area Calculation.",
 de="Berechnung der Kreisflaeche")

 public class CircleArea {
 ...
 @Description("Radius")
 @In public double r;
 ...
 }
..

1.2. @Documentation

The @Documentation annotation serves as a connector or link to more detailed background documentation about
the component. It allows to reference other documents via a URL. Usually those documents reside on a public
server or local hard drive as PDF, HTML, Docbook, or an other text document. The reference is provided as using
different URL protocols such as http://..., https://..., file://...

Synopsis @Documentation(<URL>)

arg - URL reference to more detailed documentation.

Type Documentation Annotation

Scope Class

Annotation Reference

3

Example @Documentation
 ("http://myserver.com/docs/CricleArea.pdf")
 public class CircleArea {
 ...
 }

1.3. @Author

The optional @Author annotation provides information about the authorship of the component. The annotation has
sub the fields name, org, and contact provide more details about the name, the affiliated organization, and some
contact information such as an email address, or a link to a home page.

Synopsis @Author(name=<String>, org=<String>, contact=<String>)

name - the name of the authors(s)

org - organization name (optional)

contact - contract information such as email or address (optional)

Type Documentation Annotation

Scope Class

Example @Author
 (name="Joe Scientist",
 org="Research Org",
 contact="joe.scientist@research-org.edu")

 public class HamonET {
 ...
 }

1.4. @Status

This annotation enriches a component with some development and deployment status information. A status is a
component quality indicator. A developer can specify the level of completeness or maturity of a component with
this tag.

Synopsis @Status(<Enum>)

arg - Status.DRAFT (Initial development status, private prototype)

Status.SHARED, (component worth sharing, still in development)

Status.TESTED, (component is tested in a model, test datasets and unit tests

available)

Status.VERIFIED, (component is implemented properly, complete)

Status.VALIDATED, (Component fulfills requirements, validation tests available

Status.CERTIFIED (Component accepted and certified by authorty)

Type Documentation Annotation

Scope Class

Example @Description
 ("Circle Area Calculation.")
 @Status
 (Status.TESTED)
 public class CircleArea {

Annotation Reference

4

 ...
 }

This annotation might be consumed by tools that publish the component to a component repository, it should
control the publication process. Another use case would be the pre-run check of a deployed model that all of its
components are certified by a authority.

1.5. @VersionInfo

The @VersionInfo annotation takes a argument that represents the version of this component. A developer might
use version control system supported keyword substitution for this. The example below shows the use of the Sub-
version keywords $Id to provide revision number, modification time, and developer name as version information
record. Major version control systems (CVS, Subversion,...) either have a built-in support for this feature or it can
be used in conjunction with external tools (Mercurial, GIT). Therefore this annotation should not only contain an
arbitrary version number, but a full version record instead is good common practice.

Synopsis @VersionInfo(<String>)

arg - Version information record

Type Documentation Annotation

Scope Class

Example @VersionInfo
 ("$Id: ET.java 20 2008-07-25 22:31:07Z od $")
 public class ET {
 ...
 }

Component repositories can use and present this information, archiving tools or documentation generators might
pick this up too.

1.6. @SourceInfo

The @SourceInfo annotation captures information about the source. This should be some hint about source avail-
ability, maybe the source location or some contact information. The example below shows the use of Subversion's
keyword substitution for the head URL of a source file. It can also point to a specific tagged version with a repos-
itory.

Synopsis @SourceInfo(<String>)

arg - source URL reference

Type Documentation Annotation

Scope Class

Example @SourceInfo
 ("$HeadURL: http://www.test.org/repo/ET.java $")
 public class ET {
 ...
 }

@SourceInfo is optional. Component repositories or documentation generators can use and present this informa-
tion

1.7. @Keywords

A component an be tagged with the @Keywords annotation to characterize/categorize it. It does have the same
purpose like a keyword list in a scientific paper. This is optional meta data and can be used to index, search, and
retrieve archived and stored components. It is optional meta data.

Annotation Reference

5

Synopsis @Keywords(<String>)

arg - list of kerwords separated by comma

Type Documentation Annotation

Scope Class

Example @Description
 ("Circle Area Calculation.")
 @Keywords
 ("Geometry, 2D")
 public class CircleArea {
 ...
 }

1.8. @License

The @License annotation to specify the license for a component. It is optional meta data. If not present it is assumed
the component is in the public domain and there are no restrictions for its reuse. The license can be in lined text,
however it is recommended to use a URL to point to the license text.

Synopsis @License(<String>)

arg - the license text or a URL to its location

Type Documentation Annotation

Scope Class

Example @Description("Circle Area Calculation.")
 @License("http://www.gnu.org/licenses/gpl-2.0.html")
 public class CircleArea {
 ...
 }

1.9. @Label

Labels relate to ontologies (label is an OWL annotation). Labeling a field or component maybe provides for
alternative names. They can be used to relate components or fields to another naming convention, terminology,
or ontologies.

Synopsis @Label(<String>)

arg - an alternative name

Type Documentation Annotation

Scope Class, Field

Example public class Calc {
 @Label("latitude")
 @In public double lat;
 ...
 }

Labels are optional.

1.10. @In

The @In annotation on a field specifies it as input to the component. The field must be public. It indicates a read
(or input access) from within the Execute method to the field. There are no arguments for this annotation.

Annotation Reference

6

Synopsis @In

Type execution, documentation annotation

Scope Field

Example ...
 @In public double latitude;
 ...

This annotation is a required annotation for execution to enable data flow between components. @Out fields of
one component might be connected to an @In field of a second component.

1.11. @Out

The @Out annotation on a field specifies it as output of the component. The field must be public and the Execute
method will write to it. It is used to connect to an @In field of another component. There are no arguments for
this annotation.

Synopsis @Out

Type execution, documentation annotation

Scope Field

Example ...
 @Out public double daylen;
 ...

This annotation is a required annotation for execution to enable data flow between components. @Out fields of
one component might be connected to an @In field of a second component.

1.12. @Range

The @Range annotation is supporting an @In or an @Out field. If present, it defines a min/max range in which the
value of the field is considered valid. It is up to the execution runtime to handle the range information. Violating
a ranges might lead to execution abortion if it is a serious problem or just a warning message. Another use of the
range information would be in component testing, see Section ???.

Synopsis @Range(min=<double>, max=<double>)

min - the minimum value, (default=Double.MIN)

max - the maximum value, (default=Double.MAX)

Type Execution Annotation

Scope Field

Example ...
 @Range (min=-90, max=90)
 @In public double latitude;
 ...

In the example above the latitude value can only be in the range of -90 to +90 degree. A value out of
this range would probably break any equation that is using latitude. The range use above is similar
to a pre-execution check.

1.13. @Role

The @Role annotation gives an @In or @Out tagged field a certain meaning within the modeling domain. It allows
someone to understand the meaning of a data field within the modeling context. A @Role annotation categorizes

Annotation Reference

7

a field. Such categories might be "Parameter", "Variable", "Output", "Input", "Simulated" and others. The Role
annotation takes the category as a String parameter. There are predefined categories defined in @Role, however
categories can be defined by the component developer.

If the @Role annotation is not provided, the default Role.VARIABLE it is assumed.

Synopsis @Role(<String>)

arg - the role that this field is playing in context of the component.

predefined:

Role.PARAMETER, Role.VARIABLE, Role.SIMULATED, Role.OBSERVED, Role.STATE,

Role.OUTPUT

Type Documentation Annotation, Testing

Scope Field

Example @Role(Role.PARAMETER)
 @In public double latitude;

This example tags 'latitude' as Parameter.

 @Role(Role.OUTPUT_FILE + Role.PARAMETER)
 @In public File input;

Roles can be combined too. Now the 'input' field is a parameter and an output file.

1.14. @Unit

A @Unit annotation binds a physical unit to a component field that is tagged as @In or @Out. Units are usually
attached to scalars and arrays fields. This information allows the frameworks to perform unit checking/validation
and unit conversion. There are several open source unit conversion libraries available that could be used to perform
unit conversion. An example unit conversion implementation is given in Section ???.

Synopsis @Unit(<String>)

arg - the physical unit of the field

Type Documentation Annotation, execution support

Scope Field

Example public class Calc {

 @Unit("degree")
 @In public double latitude;
 ...
 }

.

1.15. @Bound

A @Bound defines a binding to another field. It allows to express dependencies between fields. An array field could
be bound to another field that holds the size for that particular array.

Synopsis @Bound(<String>)

arg - the name of the field that this field is bould to.

Type Documentation Annotation, execution support.

Annotation Reference

8

Scope Field

Example public class ET {

 @Bound("nsim") // 'jh_coeff' is bound to 'nsim'
 @In public double[] jh_coeff;
 ...
 @In public int nsim;
 ...
 }

1.16. @Execute

The method that is tagged with the @Execute annotation provides the implementation logic of the component. In
this method the component Input is being transformed to output. The execution method can have any name, it has
to be non-static, public, void return type, no arguments.

This is required meta data for a component.

Synopsis @Execute

Type Execution Annotation

Scope Method

Example public class Component {

 @Execute
 public void executemethod() {
 // execute code here
 }
 }

1.17. @Initialize

Within the @Initialize method the internal state of a component is initialized. For example opening a file for
reading, or a creating a data base connection would be something that should be done within @Initialize

Synopsis @Initialize

Type Execution Annotation

Scope Method

Example public class Component {

 @Initialize
 public void start() {
 // initialization code
 }
 }

Name the initialize method any name you want, but annotate it with @Initialize The initialize methods has to
be non-static, public, void, and has no arguments. This method gets called once after component instantiation
and before the first execution. This is optional meta data.

1.18. @Finalize

This method provides the notion of a final cleanup after model execution (e.g. Closing a DB connection). Usually
the @Finalize method and the @Initialize method are both present.

Synopsis @Finalize

Annotation Reference

9

Type Execution Annotation

Scope Method

Example public class Component {

 @Finalize
 public void cleanup() {
 // execute code here
 }
}

The @Finalize method gets called after the final @Execute and the termination of the model.

1.19. @DLL

The @DLL Annotation simplifies the integration of native Libraries written in C++, C, and FORTRAN. It takes an
argument that corresponds to the name of the DLL (Windows), Shared Object (Linux/Unix), or Library (OSX).

If for example the argument is

Synopsis @DLL(<String>)

arg - the core name of the DLL (without lib prefix in Linux, no file extension).

Type Interface Annotation

Scope Interface<T extends Library>

Example import oms3.annotation.*;

 @DLL("F90Dyn")
 interface F95Test extends com.sun.jna.Library {
 // java interface method to FORTRAN
 int foomult(int a, int b);
 }

 // Bind 'F90Dyn.dll' to the interface 'F95Test'
 F95Test lib = Libraries.bindLibrary(F95Test.class);

Note: This annotation is supported by the

2. Meta Data Representation
There are various strategies for attaching meta data annotations to components.

2.1. Embedded Annotations

Embedded Annotations are the preferred method for annotating modeling components. They are placed directly
into the source code. Therefore it is easy to keep code and meta data in sync during development.

import oms3.annotations.*;

 public class Daylen {

 static final int[] DAYS = {
 15, 45, 74, 105, 135, 166, 196, 227, 258, 288, 319, 349
 };

 @Range(min=6, max=18)
 @Out public double daylen;

 @In public Calendar currentTime;

 @Role(“Parameter”)

Annotation Reference

10

 @Range(min=-90, max=90)
 @In public double latitude;

 @Execute
 public void execute() {
 int month = currentTime.get(Calendar.MONTH);
 double dayl = DAYS[month] - 80.;
 if (dayl < 0.0)
 dayl = 285. + DAYS[month];

 double decr = 23.45 * Math.sin(dayl/365.*6.2832)*0.017453;
 double alat = latitude*0.017453;
 double csh = (-0.02908 - Math.sin(decr) * Math.sin(alat))
 /(Math.cos(decr) * Math.cos(alat));
 daylen = 24.0 * (1.570796 - Math.atan(csh /
 Math.sqrt(1. - csh * csh))) / Math.PI;
 }
 }

2.2. Attached Annotations

The following Listing show a alternative implementation of the Daylen component. It was split into two parts, (i) a
pure computational component class Daylen.java and (ii) the component meta data class DaylenCompInfo.java
. Only the latter has meta data dependencies to OMS3.

DaylenCompInfo.java

 public abstract class DaylenCompInfo {

 @Range(min=6, max=18)
 @Out public double daylen;

 @In public Calendar currentTime;

 @Role(“Parameter”)
 @Range(min=-90, max=90)
 @In public double latitude;

 @Execute
 public abstract void execute();

 }

As a rule, an attached component meta data class has the same name like the component but ends with CompInfo.
This class has to be public and abstract. It duplicates all the relevant fields and methods that should be annotated
for OMS3. The methods should all be abstract. It is important to use the same spelling for fields and methods.

Daylen.java

 public class Daylen {

 static final int[] DAYS = {
 15, 45, 74, 105, 135, 166, 196, 227, 258, 288, 319, 349
 };

 public double daylen;
 public Calendar currentTime;
 public double latitude;

 public void execute() {
 int month = currentTime.get(Calendar.MONTH);
 double dayl = DAYS[month] - 80.;
 if (dayl < 0.0)
 dayl = 285. + DAYS[month];

Annotation Reference

11

 double decr = 23.45 * Math.sin(dayl/365.*6.2832)*0.017453;
 double alat = latitude*0.017453;
 double csh = (-0.02908 - Math.sin(decr) * Math.sin(alat))
 /(Math.cos(decr) * Math.cos(alat));
 daylen = 24.0 * (1.570796 - Math.atan(csh /
 Math.sqrt(1. - csh * csh))) / Math.PI;
 }
 }

There are pro and cons for using embedded and attached component meta data. External meta data enables clean
and neutral computational components parts with no framework dependency. However, two separate files have to
be managed and have to kept in sync while doing component development.

2.3. Attached XML

[tbd]

